Existence of nontrivial solutions for a biharmonic equation with p-Laplacian and singular sign-changing potential
نویسندگان
چکیده
منابع مشابه
Existence and multiplicity of nontrivial solutions for $p$-Laplacian system with nonlinearities of concave-convex type and sign-changing weight functions
This paper is concerned with the existence of multiple positive solutions for a quasilinear elliptic system involving concave-convex nonlinearities and sign-changing weight functions. With the help of the Nehari manifold and Palais-Smale condition, we prove that the system has at least two nontrivial positive solutions, when the pair of parameters $(lambda,mu)$ belongs to a c...
متن کاملExistence of a positive solution for a p-Laplacian equation with singular nonlinearities
In this paper, we study a class of boundary value problem involving the p-Laplacian oprator and singular nonlinearities. We analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ We find lower bounds of critical parameter $lambda^{ast}$. We use the method ...
متن کاملExistence of Nontrivial Solutions for Singular Quasilinear Equations with Sign Changing Nonlinearity
By an application of Bonanno’s three critical point theorem, we establish the existence of a nontrivial solution to the problem −∆pu = μ g(x)|u|p−2u |x|p + λa(x)f(u) in Ω, u = 0 on ∂Ω, under some restrictions on g, a and f for certain positive values of μ and λ.
متن کاملExistence of multiple positive solutions for a p-Laplacian system with sign-changing weight functions
A p-Laplacian system with Dirichlet boundary conditions is investigated. By analysis of the relationship between the Nehari manifold and fibering maps, we will show how the Nehari manifold changes as λ,μ varies and try to establish the existence of multiple positive solutions. c © 2007 Elsevier Ltd. All rights reserved.
متن کاملEXISTENCE OF MULTIPLE SOLUTIONS FOR A p(x)-BIHARMONIC EQUATION
In this article, we show the existence of at least three solutions to a Navier boundary problem involving the p(x)-biharmonic operator. The technical approach is mainly base on a three critical points theorem by Ricceri.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2017
ISSN: 0893-9659
DOI: 10.1016/j.aml.2016.11.001